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INTRODUCTION

In recent years there has been a growing interest in the study of the logic of causal rea-
soning. It is generally agreed that the causal nexus in itself is not logical in nature. But
what has a logical structure is the way we think and speak about causal phenomena.
And because causal phenomena pop up everywhere and grasping them is so fundamen-
tal for the structuring of the world, causal reasoning plays a major role in everyday life
and in the empirical sciences. While people are usually able to apply a causally colored
terminology without major difficulties, a closer philosophical analysis often reveals a
striking difference in the intuitions about causality and the inter–relationships between
a huge family of uncertain terms, giving rise to a lot of conceptual tensions. It therefore
seems valuable to try to use formal methods in order to unravel the inherent structure
of our causal thinking. Hopefully, this will lead to a better understanding of our basic
intuitions and to improve inferences based on causal arguments.

Formal Systems
In order to gain such an understanding one must first of all consider the question con-
cerning what kind of logic represents our causal reasoning. During the past decades a
large number of non–classical calculi have been developed, alongside classical logic,
which may also be proper candidates for the formalization of causation. First, one
has to decide whether one believes that first–order logic is appropriate or whether the
analysis can be carried out within the confines of propositional logic. That is, one has
to face the question whether to think about causation as a relation or as a sentential
connective.

One may prefer sentential connectives to (two–argument) predicates as counter-
parts of causal relations. The reason for this is simply due to the following categorial
ground: the causal nexus connects singular events. Such items could formally be rep-
resented quite naturally by propositional variables. So any such formalization of the
causal nexus is supposed to deal with propositional variables. In case of a causal pred-
icate the argument places are filled in with individual variables, i.e. formal objects
representing (names for) individuals.

Perhaps it is always possible to translate one of these categories into the other. If
so, it doesn’t really matter whether one presents one’s analysis in terms of sentential
connectives or predicates. Sentential connectives as sentence–forming operators are
the natural counterparts for the “. . . because of . . . ” phrase, just as they are appropriate
for the “if . . . , then . . . ”, or the “. . . and . . . ” construction.

As a matter of internal logical aesthetics one sometimes has to lift a formal ap-
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proach from merely sentential considerations to the first–order level in order to obtain
a fully developed logical formalism. Then, however, one should think about a pred-
icatively structured formalization of the notion of a singular event and end up with a
second order theory.

In favour of the introduction of causal predicates one could mention causally col-
ored secondary notions like “. . . brings about . . . ” or “. . . is responsible for . . . ”. There
are two major arguments in favour of treating causation as a relation, both of them are
concerned with ontology, and not with logic. The first deals with the kind of entities
causation involves: usually the entities are taken to be events. Our talk about causal
relations directly refers to this fact. Thus, causation is regarded as a relation between
objective events, whereas an implication is a sentence–forming operator on pairs of
sentences. Obviously one can either use other names of entities as arguments in causal
sentences (tensed propositions, propositions expressing an event), or understand the
sentences connected by the causal implication as sentences reporting the occurrence of
events. In this latter case what then has to be solved is the question whether the occur-
rence of an event is an event identical with the original event. The second argument in
favour of the relational account is connected with the nature of causality itself: while
connectives, implications, are a matter of logic, relations and their relata are situated in
the world of empirical things, they are matters of facts. Thus, realist arguments are on
the side of a relational approach. Those who seek causality in the real world would be
inclined to understand it as a relation.

The question of whether causation is represented by a sentential connective or a
predicate raises a further problem: what can be regarded as an appropriate formaliza-
tion and what cannot. There is no easy solution. The slogan is: “Take the definition
of the causal nexus, formalize it and call what you obtain a ‘causal connective or pred-
icate’ ”. However, this answer is not really helpful in the present case. The various
explications of the causal connectives or predicates that occur in the literature are sel-
dom precise enough to allow immediate logical formalization. Furthermore, although
there are many definitions, there is, at the same time, a noteable lack of agreement on
these definitions.

It is, indeed, a natural question to ask for more or less adequate formalizations of
concepts of the causal nexus as they are elucidated by philosophers. There are a few
examples in the literature. It might, however, be seen as much more important (and
interesting as well) to formalize causal terminology which is in fact used in empirical
sciences. In providing for such a formalization we must first of all ask for the object
of formalization. How do we filter out the notion which is to be formalized from the
maze of utterances in which it is buried?

One may try to overcome the difficulties obviously arising from that situation in
various ways:
1. On the basis of more or less clearly formulated intuitions one defines formal ob-

jects and calls them “causal junctors”, “causal connectives”, “causal predicates”,
or whatever. Subsequently, these nominal definitions are to be justified by proving
their adequacy to the terminology of causality functioning in real language, other-
wise they are not justified at all. This procedure was chosen by Jan Łukasiewicz
in his “Analysis and Construction of the Concept of Cause”, one of the very first
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papers on causal logic (cf. [14]). It seems, however, that this choice merely post-
pones the problem instead of solving it. The reason is that logic itself has almost
no power to bring its constructions into any spoken language, i.e. to execute obe-
dience to the rules concerning the use of its artificially linguistic creations. For if
the intended users of the formalization reject the proposed metamathematical con-
structions as appropriate formal counterparts then the formalization turns out to be
a failure.

2. Starting from the use of causal terminology in some specified realm of natural lan-
guage (say, in a given empirical science) one should first establish as precisely as
possible all the available properties of causal relations as used in the realm con-
sidered. Next, one has to formalize these properties. In this manner a frame of
metamathematical properties is obtained which the formal counterparts of causal
relations must possess. Finally, one is in a position to construct — so to say “in
stock” — a manifold of connectives falling into this frame whose formal proper-
ties vary to some extend. One might thereby hope to cover all the intentions of the
causal notions used in the texts considered.

All appropriate metamathematical counterparts of the kind of causation considered
must fulfill the required frame conditions and may therefore be elements of the
constructed manifold of connectives. So “all” what remains is to figure them out.

3. Starting from well–founded ontological assumptions concerning reality, one de-
signs all possible kinds of causal connections (i.e. those consistent with the onto-
logical settings about the structure of the world), and then distinguishes the cases
of practical relevance, i.e. the kinds of causal nexus to be found in the real world.

This third variant could be called “formal–ontological” causal analysis. As Roman
Ingarden puts it when speaking about causally structured worlds:

“The task of formal ontology is nothing but to give an overview of these possibili-
ties. Only taking into account material ontology could possibly reduce the number
of purely formally established possibilities, and only then metaphysics or the nat-
ural sciences might decide which one of these various cases is indeed realized.”
([7], p. 390)

In the following we shall present various formal approaches for explicating causation.
As the matter is technically complicated enough we shall usually follow the manner
of presentation adopted by their respective authors. Although it is often possible to
switch from the sentential to the first order level we will give the former version — in
most cases the extension to the latter is obvious. The systematization of the various
formal approaches presented below is neither exhaustive nor leaves out the possibility
that some of these systems will fall into more than one group.

The First Attempt
The first well–known attempt at formally characterizing an explicitly causal connective
was undertaken by Arthur Burks in 1951 (cf. [3]). It is based on modal logic and
includes a causal necessity operator �c :
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1. (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))

2. A ⊃ (B ⊃ A)

3. (∼ A ⊃∼ B) ⊃ (B ⊃ A)

4. (α)(A ⊃ B) ⊃ (A ⊃ (α)B), if α is not free in A

5. (α)(A ⊃ B), where α is an individual variable, β is an individual variable or
constant, and no free occurrence of α in A is in a well formed part of A of the form
(β)C, and B results from the substitution of β for all free occurrences of α in A

6. �A ⊃ �c A

7. �c A ⊃ A

8. (α)(A ⊃ B) ⊃ ((α)A ⊃ (α)B)

9. �(A ⊃ B) ⊃ (�A ⊃ �B)

10. �c (A ⊃ B) ⊃ (�c A ⊃ �c B)

11. (α)�A ⊃ �(α)A

12. (α)�c A ⊃ �c (α)A
I. From A and A ⊃ B to infer B

II. If A is an axiom, so is (α)A

III. If A is an axiom, so is �A

Based on the system, a causal connective is to be defined as follows:

Definition (Causal Implication)
A causally implies B, iff �c (A ⊃ B).

An interesting detail can be added: whereas much further research in causal logic after
Burks starts with counterfactuals in order to define causality, Burks himself uses causal
implication in order to define counterfactuals. The causal implication defined above is
something between a strict implication and the material implication, and is the object
of various criticisms.

The Counterfactual Analysis
The most representative advocate of the counterfactual approach to causality is prob-
ably David Lewis. The basic idea underlying the introduction of the counterfactual
condition consists in the belief that the occurrence of a cause makes a difference in the
world: the world would be different, if the cause had not taken place. Thus, one has
to take into account not only the actual situation, but also one or more possible situa-
tions in order to evaluate a causal statement. Usually this is done in a possible worlds
framework. In order to avoid misunderstandings we remind the reader of the following
background aspects of Lewis’ analysis:
1. Causes and effects are events in the everyday sense of the word.
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2. The topic is token causation, that means, causation involving particular, singular
events (and not classes or types of events).

3. To be a cause does not mean to be The single, unique, complete Cause; but rather
to be one of the causes.

4. The following analysis is the analysis of causation under determinism.
Lewis presupposes a theory of counterfactuals. The truth conditions for counter-

factuals are as follows:

A�→B is true (in a world w) iff either
i. there are no A–worlds; or

ii. some A–world where C holds is closer to w than is any A–world where C does
not hold.

The notion of “closeness” of worlds may have different formal and intuitive interpre-
tations. Lewis, however, prefers to understand it in terms of a similarity relation with
two restrictions: our actual world is closest to actuality (thus, from A ∧ B follows
A�→B, sometimes called the non–connection thesis); and similarity generates a weak
ordering of worlds (the axiomatization below and some results on counterfactuals are
to be found in his [11], first published in 1973).
There are several axiomatic formulations of Lewis’ ideas on counterfactuals. One of
the earliest runs as follows:
1. All truth–functional tautologies are axioms.

2. A�→A

3. ((A�→B) ∧ (B�→A)) ⊃ ((A�→C) ≡ (B�→C))

4. ((A ∨B)�→A) ∨ ((A ∨B)�→B)∨
(((A ∨B)�→C) ≡ (A�→C) ∧ (B�→C))

5. (A�→B) ⊃ (A ⊃ B)

6. A ∧B ⊃ (A�→B)
I. If A and A ⊃ B are theorems, so is B.

II. If (B1 ∧ . . .) ⊃ C is a theorem, so is ((A�→B1) ∧ . . .) ⊃ (A�→C).

Let A1, A2, . . . and C1, C2, . . . be families of propositions of equal size, no two
members of which are compossible. Then the family C1, C2, . . . depends counterfac-
tually on the family A1, A2, . . ., if all the counterfactuals A1�→C1, A2�→C2, . . .
between the corresponding propositions are true. Let e be an event and O(e) be the
proposition that holds at all and only those worlds where e occurs. This makes it pos-
sible to introduce event causation:

Definition (Causal Dependence I)
Let c1, c2, . . . and e1, e2, . . . be distinct possible events such that no two of the
c’s and no two of the e’s are compossible. The family e1, e2, . . . of events depends
causally on the family c1, c2, . . . of events, iff the family O(e1), O(e2), . . . depends
counterfactually on the family O(c1), O(c2), . . ..
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Definition (Causal Dependence II)
Let c and e be distinct possible particular events. Then e depends causally on c iff the
family O(e), ∼ O(e) depends counterfactually on the family O(c), ∼ O(c).

Definition (Causation)
Causation Relation is the transitive closure of Causal Dependence II.

The major advantages of the construction above is the expression of a conception of
causation, within a well–investigated and easy manageable formalization, which is
non–committal on a number of issues such as backward causation and (indirect) self–
causation are allowed, and even causation’s antisymmetry as some examples show.
Many philosophers find these possibilities counterintuitive, but they all fit Lewis’ intu-
itions, and so he is not worried about them.

Other Modal Approaches
Modal logic is still the best developed area of non–classical logic. For reasons ex-
plained in the section “The axiomatic approach” causal analysis in modal logic is
mostly performed by semantical means. The most convenient model–theoretical tool
is undoubtedly Kripke’s possible world semantics, and many considerations grounded
on Kripke’s framework are found in the literature.

Independently of Lewis a similar counterfactual approach was developed by Robert
Stalnaker (who actually published the first paper using Kripke–models in causal analy-
sis, see [23]) and by others. According to some authors ([6], [13]), it is even possible to
pursue formal causal analysis completely within the realm of modal logic. One should,
however, avoid defining the causal connective merely as some kind of necessitated im-
plication. Otherwise, as Kit Fine had already remarked, one would be forced to accept
some paradoxical consequences.

Besides conceptions based on Kripke–frames there are some other constructions
making use of modal–logical techniques. Most of them rely on relational frame se-
mantics. There are some exceptions based on neighborhood semantics (see for instance
[22]), not to mention more general semantical types such as Boolean frames ([27]).

A quite original conception, remarkable both with respect to its age and scope, is
due to Stanisław Jaśkowski. In his [8] he considers an extension FORf of the classical
propositional language enlarged by one two–argument sentential connective ∀f . Where
H and G are formulas, ∀f(H)G is well–formed too and should be read: “G is true for
all values of the factors of H”. The factors of a formula H are the circumstances
relevant for the state of affair described by H . The precise meaning of this notion is
revealed in the subsequent semantical considerations. Jaśkowski constructs a causal–
logical sentential system Qf via an interpretation of FORf by a bundle of translations
{ti}i∈I in first order predicate calculus PC1: Qf = {H ∈ FORf ; for all i ∈ I :
ti(H) ∈ PC1}.

It turns out that the original construction of Qf can be generalized considerably.
Instead of PC1 any regular modal system L may be used. One starts with the class KL

of all f–o Kripke–frames F= 〈W,Q,R, P 〉, for L, i.e. F|=m L. Then KL is adequate
for L: E(KL) = L. Next one forms products of KL–frames, so-called n–dimensional
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frames. The notion of a n–dimensional model and the acceptance relation between
n–dimensional models, points of such models and formulas of FORf are explained
as usual. The only interesting case is the interpretation of the non-classical connective.
LetM(n) = 〈W1×. . .×Wn, {Ri}i∈I , {Q(n)

i }i∈I ,P, φ〉withQi = W1×. . .×Wi−1×
Qi×Wi+1×. . .×Wn ,Ri = id1×. . .×idi−1×Ri×idi+1×. . .×idn,P= Π1×. . .×Πn

and φ : FORf −→ P be a n–dimensional model, x(n) = (x1, . . . , xn), y(n) ∈ W(n).

M(n) |= ∀f(H)G[x̃] ⇐⇒df

⇐⇒df M(n) |= G ∧
∧

{k1,...,km} ⊆{1...n}
♦1 . . .♦n(♦k1H ∧ ♦k1¬H) ∧ . . .

. . . ∧ ♦1 . . .♦n(♦kmH ∧ ♦km¬H) → �k1 . . .�kmG

The acceptance relation is generalized to models, frames and classes of frames in
the usual way. Then one explains the causal system CL correlated with the modal logic
L as CL =df

⋂
n∈ω

{H ∈ FORf ;K(n)
L |= H}.

In this way one produces a large manifold of causal systems. Jaśkowski’s original
calculus is among them: Qf equals CS5. And what is more, all constructions of non–
classical logics semantically based on Kripke–frames (such as intuitionistic and tense
logic or inconsistency tolerant calculi and first–order versions thereof) can be used to
modify the above causal–logical approach. This gives a large number of different cal-
culi. And consequently, any definition of a causal connective leads to an equally large
variety of causal functors, since the specific properties of these functors differ from
one system to the other. It obviously increases the chance of obtaining an appropriate
formalization of the causal nexus.

The INUS Condition
Following ideas particularly of John Stuart Mill, some philosophers identify causes
with conditions. The clear advantage consists in the well–formedness of our intuitions
about conditions: we have sufficient, necessary, and sufficient and necessary conditions
with established rules of application of these notions. Unfortunately, as John Mackie
is not the only one to have mentioned, these notions are too strong in general. Some-
times we apply the term “cause” to conditions which are obviously neither sufficient,
nor necessary for their supposed effects, let alone both of them together. In addition,
sufficient and necessary conditions themselves — though sometimes regarded as basic
— are analyzable in different manners. On a token level, with respect to singular events
rather then to types of events, a counterfactual approach seems to be suitable. Against
this approach, the following ideas of Mackie (cf. [16], though in this respect it differs
from his [15]) are based on a regularity interpretation:

Definition (Necessary and Sufficient Condition)
Let X and Y stand for type of situation or event. Then, ‘X is a necessary condition
for Y ’ means that whenever an event of type Y occurs, an event of type X also occurs,
and ‘X is a sufficient condition for Y ’ means that whenever an event of type X occurs,
so does an event of type Y .
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This definition shows that — contrary to some statements — analysis in terms of neces-
sary and sufficient causes does not require a modal garb. The first point of criticism still
remains open: necessary and/or sufficient conditions are too strong to express causality.
This is exactly the point at which Mackie introduces his ingenious explication of causa-
tion, by forming the notion of an insufficient but non–redundant part of an unnecessary
but sufficient condition — an INUS condition. The intuition behind the INUS condition
is easy to grasp; given a certain causal background (in the following: F ) the cause is
necessary for the effect among the given collection of conditions, but there could have
been other collections of circumstances that produce the same effect. Only the totality
of all possible collections which are sufficient for the effect is a necessary and sufficient
condition. This is expressed by the definition:

Definition (INUS Condition)
A is an INUS condition of P in F if and only if, for some X and for some Y all
F (AXorY ) are P , and all FP are (AXorY ).

Following Mackie’s way of using disjunctive normal forms and extending it somewhat
one can understand any elementary formulas (INUS conditions) as possible causes,
elementary formulas describing the actual situation (“existing” INUS conditions) as
causes:

Definition (Cause)
Let x1, . . . , xn be elementary formulas, expressing simple conditions, and X a for-
mula in disjunctive normal form whose elementary conjunctions contain x1, . . . , xn.
Let X — under F — express a necessary and sufficient condition of P . Then, all of the
x1, . . . , xn are possible causes of P , and all x1, . . . , xn belonging to an elementary
conjunction expressing an existing condition, are causes of P .

At first sight INUS conditions solve the frame problem for the causal nexus, which
is particularly important for regularity theories. The question of which parts of the
world one should include in the ceteris paribus clause is answered by reference to the
remaining part of the elementary conjunction. Even better, any of the ceteris paribus
conditions is an INUS condition and therefore able to play the role of a cause, in which
case the “original” cause joins the ceteris paribus conditions. Nevertheless, there is no
possibility of finding the ceteris paribus conditions or the other collections of INUS
conditions that form the necessary and sufficient condition by logical means.

Recognizing and testing INUS conditions lies beyond the scope of logic. If there were
a clearly defined way of carrying out these procedures and fixing the results it should
be possible to introduce such heuristic aspects to the transparent and well investigated
structure that disjunctive normal forms are. The remaining part of the section describes
an attempt to bridge the gap between classical philosophical investigations and the
implementation of causal operators in Artificial Intelligence using INUS conditions.

Following ideas of Mill — the method of differences (cf. below) — and Mackie
— the INUS conditions — a causal test strategy was developed and implemented in
PROLOG by Michael May (cf. [17]). It aims to show how it is possible to find and
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to verify INUS conditions based on already known ones. Suppose, some “Mackie–
structure” hx1 ∨ x2 is assumed to be necessary and sufficient for an effect, where
h are known INUS conditions, x1 are the (unknown) remaining conditions making
the elementary conjunction sufficient, and x2 is the remaining part of the disjunctive
normal form. May proposes to test new hypotheses and to fix the results in the form of
a 4-tupel [Z1, Z2, Z3, Z4], summed up a test table as follows (here, B is tested against
A):

(T0) B ¬B
A Z1 Z2
¬A Z3 Z4

Each of the Zi is either 1 or 0, dependent on whether the effect occurs or not. A 4-tupel
[1, 0, 0, 0] would show that B can be (conjunctively) added to A as an INUS condition:
B is part of a minimal sufficient condition.

Although May later weakens some of the initial conditions of his analysis, the more
elaborated system depends on the following assumptions:
i. there is an (incomplete) causal hypothesis,

ii. there is a test situation,

iii. not explicitly mentioned relevant causal conditions are — during a test — either
always present, or always absent, and

iv. no different sufficient conditions contain the same INUS condition.
Formally, the last condition restricts disjunctive normal forms to formulas in which

elementary conjunctions do not share any common elementary formula. Intuitively, the
restriction is much to strong: it requires that all causes are causes only in one setting of
conditions, and in no other.

Let K be the condition under test, and V (where it occurs) be that INUS condition
against which K is tested. Let h, xi be as mentioned above, then the following are the
rules of causal deduction ([17], p. 70):
(T1) [1, 0, 0, 0],K, hx1 ∨ x2 −→ hKx1 ∨ x2

(T2) [0, 1, 0, 0],K, hx1 ∨ x2 −→ h¬Kx1 ∨ x2

(T3) [1, 1, 1, 0],K, hx1 ∨ x2 −→ hx1 ∨ x2 ∨Kx3

(T4) [1, 1, 0, 1],K, hx1 ∨ x2 −→ hx1 ∨ x2 ∨ ¬Kx3

(T6) [1, 0, 1, 0],K, hx1 ∨ x2 −→ hx1 ∨ x2 ∨Kx3

(T7) [0, 1, 0, 1],K, hx1 ∨ x2 −→ hx1 ∨ x2 ∨ ¬Kx3

(T8) [1, 0, 0, 1], V, K, hV x1 ∨ x2 −→ hV Kx1 ∨ x2 ∨ ¬K¬V x3

(T9) [0, 1, 0, 1], V, K, hV x1 ∨ x2 −→ hV ¬Kx1 ∨ x2 ∨K¬V x3

(T10) [1, 0, 1, 1], V, hV x1 ∨ x2 −→ hV x1 ∨ x2 ∨ ¬V x3

(T11) [0, 1, 1, 1], V, hV x1 ∨ x2 −→ hV x1 ∨ x2 ∨ ¬V x3

(T12) [0, 0, 1, 0], V, K, hV x1 ∨ x2 −→ hV x1 ∨ x2 ∨ ¬V Kx3

(T13) [0, 0, 0, 1], V, K, hV x1 ∨ x2 −→ hV x1 ∨ x2 ∨ ¬V ¬Kx3

(T14) [0, 0, 1, 1], V, hV x1 ∨ x2 −→ hV x1 ∨ x2 ∨ ¬V x3

May’s specific combination of the method of differences with the INUS–condition ap-
proach allows for solving important epistemic problems of causality: of finding causal
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relevant conditions, of recognizing minimal sufficient conditions, of recognizing in-
terference factors, of recognizing irrelevant factors for minimal sufficient conditions,
and of recognizing overdetermination and common causes. However, it depends not
only on the assumptions mentioned above, but also on a regularity approach and on the
assumption of type causation.

The Branching Time Approach
There are other attempts based on the notion of time. It has been suggested that a basic
notion in defining causality is that of branching time. Properties of the causal nexus
are then derived from the presumed ontologically open structure of the future.

The appropriate formal tools were first made available in the 1950’s by Arthur N.
Prior. Leaning on a profound knowledge of history of logic, he created a new logical
discipline closely related to modal logic: tense logic. Saul Kripke suggested to him the
idea of branching time. Prior incorporated this tree structure into the concept of time
itself and was led to some philosophical reflections:

“Genuine determinism would be the belief that there is only one possible future,
and to express this you really do need to go beyond Kt [the minimal tense logical
calculus] and add a postulate for nonbranching of the future.” ([19], 329)

Prior’s attempt to create a formal theory of branching time had many followers.
Storr McCall, for instance, claims that the passing of time is equivalent to a loss of
possibilities, i.e. our understanding of this process reflects time as a branching system.
(cf. [18]) Yet this view is not generally accepted. As Nicholas Rescher puts it, branch-
ing is in time, but there is no branching of time — time itself does not branch. ([21],
73 ff.)

A recent attempt is due to Nuel Belnap (see [1]) who uses the concept of branching
space–time — “a simple blend of relativity and indeterminism” as he calls it ([1], p.
385). Gambling with technically rather uncomplicated tools — i.e. with point events
ordered by a branching (causal) order — Belnap is quickly involved in a discussion of
advanced topics in causal analysis in physics. His conception has a strong impact on
philosophical issues such as indeterminism, the actuality of the future, and the status
of assertions about future events whose occurrence is already settled (in contrast to the
status of those statements about merely predicted facts).

In a recently written paper, Belnap and Green argue

“that one can make sense of an indeterministic, branching structure for our world
without postulating an actual future as distinguished among the possibilities” ([2],
p. 3)

The authors thus reject the common belief in the existence of a Thin Red Line (that
represents the course along which history will develop) in favour of an open future.

In a similar framework of branching histories von Kutschera pursues his analy-
sis of causation ([9]). The difference between him and the above authors is that von
Kutschera does not take any notion of causation as primitive, but tries to define the
concept of a cause from logically more basic notions. By a cause he understands
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“an event which was not sure to have occurred and whose occurrence first guar-
anteed that of the effect. . . . The effect, therefore, is conceived of as a necessary
consequence of an event which in turn didn’t occur necessarily. The concept of
necessity employed is not a logical or nomological one. Necessary is rather what
is the case no matter what turn the future history of the world will take.” ([9], p.
563)

In his analysis it turns out that there are no causal chains at all.
His basic notion is that of a tree–universe.

Definition (Tree-Universe)
A tree-universe is a pair U= 〈I,R〉 such that

1. I is a set of world–states

2. R is a binary relation of immediate succession on I such that for all i, j ∈ I we
have

1. the set of initial states I0 is explained as {j;¬∃i : iRj} 6= ∅ ;
2. ∀i∃j(j ∈ I0 ∧ jR≥0) , where R≥0 is the ancestral of R ;
3. iRj ∧ kRj → i = k ;
4. for all natural numbers m and n with m < n :

∃i, k(i ∈ I0 ∧ iRnk) → ∀i, k(i ∈ I0 ∧ iRmk → ∃j : kRj) .

The concept of the set T of time points t, t′, . . . and of the set of worlds can then be de-
fined. For each world state i there is an uniquely defined natural number z(i) represent-
ing its distance from some initial state j ∈ I0. Then one has T =df {n;∃i(z(i) = n)}
and W =df {w ∈ IT ;∀t(w(t)Rw(t + 1) ∧ w(0) ∈ I0)}. Subsequently, he deals with
the notion of event, defined as sets of segments of worlds. Events occur at most once
in every world, and they have a well–defined beginning and end, coded by some time
interval τ = [t1, t2].

Definition (Event)
An event is a set E of segments of worlds such that

1. ∀wτ , wτ ′ ∈ E : τ = τ ′ ;

2. ∀wτ , w′
τ ′ ∈ E : wτ ∩ w′

τ 6= ∅ → τ = τ ′

von Kutschera understands a cause as something whose occurrence for the first time
guarantees the occurrence of the effect. In order to state this precisely some further
abbreviations are helpful. The state of affairs that E occurs is formally expressed by
E0 =df {w;∃τ : wτ ∈ W}. Furthermore, let Ww(t) be the set of all worlds passing
through w(t). E is determined in w and t [symb.: D(E,w, t)] iff Ww(t) ⊂ E0 and E
is determined in w from its beginning [symb.: Db(E,w)] iff there is an time interval τ
such that wτ ∈ E and D(E,w, t).

Definition (Cause)
The event E causes the event E′ in the world w [symb.: K(w,E,E′)]
⇐⇒df ∃τ(wτ ∈ E ∧



Introduction 12

∧ ∀w′, τ ′(w′ ∈ Ww(τ1) ∧ w′
τ ′ ∈ E → DB(E′, w′) ∧ ¬D(E′, w′, τ ′1))) .

von Kutschera goes on to elaborate his approach in which appears to be one of the most
interesting and promising recent attempts of formal causal analysis.

The Probabilistic Analysis
Serious philosophical questions and objections are often raised against probabilistic
analysis, such as those concerning the understanding of probability, the interpretation
of (the exclusion of) border cases, the concrete choice of the base of conditionaliza-
tion, and others. But it is unfair to burden probability theory of causation with all these
problems; rather a lot of them belong either to the probability theory in general, or
to the causal theory in general. The probabilistic analysis obviously satisfies many of
the intuitions connected with causality: that the occurrence of the cause makes it more
likely for the effect to occur than without this occurrence, that causes open new (pos-
sible) ways, that one could have expected the effect by knowing the cause in advance.
The probabilistic framework — which is quite common in several sciences — allows
us to express the main idea that a cause is a possible event that raises the probability of
its effect. This kind of analysis comes in many forms.

In order to understand the basic ideas underlying the probabilistic approach it is
useful first to have a look at one of the earliest attempts to link probability theory with
philosophical analysis of causation. Hans Reichenbach’s initial idea (cf. [20]) consists
in two parts: a cause produces its effect, while an effect records its cause; and in order
to use this distinction in his analysis, he develops his famous mark method. According
to Reichenbach a mark is the result of an intervention by means of an irreversible
process. It is possible to define a relation “causally between” without further reference
to other causal concepts (P (A,B) means the probability of the sequence “A and then
B”):

Definition (Causally Between)
An event A2 is causally between the events A1 and A3 if the following relations hold:

1. 1 > P (A2, A3) > P (A1, A3) > P (A3) > 0,

2. 1 > P (A2, A1) > P (A3, A1) > P (A1) > 0,

3. P (A1.A2, A3) = P (A2, A3).

The third condition formulates the important idea, that “nearer” causes screen off the
efficiency of distant causes. The aim of the construction is to define causal relevance,
which is the philosophical backbone of Reichenbach’s conception: If a mark made in
an event Ai shows in an event Ak, then Ai is causally relevant to Ak. The following
assumptions are made in order to link the relation defined above with the marking
process:

Assumption α. If a mark made in Ai shows in Ak, then P (Ai, Ak) > P (Ak).

Let A′ be the event resulting when the mark is added to A:
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Assumption β. If a mark is made in Ai, then either
P (A′

i, A
′
k) = P (Ai, Ak), or

P (A′
i, Ak) = P (Ai, Ak).

Assumption γ. If A2 screens off A1 from A3, and if a mark made in A1 shows in A3,
then it also shows in A2.

Assumption δ. If a set A
(1)
2 . . . A

(n)
2 screens off A1 from A3, and if a mark made in

A1 shows in A3, then it also shows in at least one of the events A
(1)
2 . . . A

(n)
2 .

The assumptions express Reichenbach’s conviction in action by contact. A final defi-
nition fixes the central point of probabilistic analysis of causation:

Definition (Causal Relevance)
An event A1 is causally relevant to a later event A3 if P (A1, A3) > P (A3).

Quite obviously, Reichenbach anticipated a lot of ideas that were later incorporated in
more sophisticated treatments.

One of the more elaborated probabilistic accounts of causation is due to Patrick
Suppes, who tried to build up a formal framework on the basis of some of Reichen-
bach’s ideas. The system is explicated in a series of definitions, taken from his [25]:

Definition (Prima Facie Cause)
The event Bt′ is a prima facie cause of the event At if and only if

i. t′ < t,

ii. P (Bt′) > 0,

iii. P (At|Bt′) > P (At).

Suppes now faces the problem of spurious causes, that is events which appear to be
causes, but which are not quite what they appear to be. In order to grasp the really
effective causes, he has to exclude co–occurrent events not causally connected, but
nevertheless related according to the definition above. He first defines spurious causes
in one sense based on other effective events, and then moves on to define them in
another sense based on the occurrence of events of a certain type. The following two
definitions differ in their existential requirement: one is concerned with singular events
and the other with event types.

Definition (Spurious Cause I)
An event Bt′ is a spurious cause in sense one of At if and only if Bt′ is a prima facie
cause of At and there is a t′′ < t′ and an event Ct′′ such that

i. P (Bt′Ct′′) > 0,

ii. P (At|Bt′Ct′′) = P (At|Ct′′),

iii. P (At|Bt′Ct′′) ≥ P (At|Bt′).

As Suppes claims this definition makes a prima facie cause spurious if there exists
an earlier event that eliminates the effectiveness of the cause when that event occurs.
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According to him, condition (iii) imposes a rather strong constraint on this earlier event.
All examples he looks at suggest an alternative approach in which the third condition
is dropped and a partition of the past before the spurious cause is introduced so that for
every element in the partition, condition (i) and (ii) hold. Intuitively, this corresponds
to the stated requirement — that if one can observe an event of a certain kind, a type of
earlier event, then knowledge of the spurious cause is predictively uninformative:

Definition (Spurious Cause II)
An event Bt′ is a spurious cause of At in the second sense if and only if Bt′ is a prima
facie cause of At and there is a t′′ < t′ and a partition πt′′ such that for all elements
Ct′′ of πt′′

i. P (Bt′Ct′′) > 0,

ii. P (At|Bt′Ct′′) = P (At|Ct′′).

Suppes’ construction is closely related to everyday intuitions of causality. They al-
low for definitions expressing the straightforward understanding of how causal notions
work, as the following two examples show:

Definition (Direct Cause)
An event Bt′ is a direct cause of At if and only if Bt′ is a prima facie cause of At and
there is no t′′ and no partition πt′′ such that for every Ct′′ in πt′′

i. t′ < t′′ < t,

ii. P (Bt′Ct′′) > 0,

iii. P (At|Ct′′Bt′) = P (At|Ct′′).

“Direct causes do not have mediate effective events”; and

Definition (Supplementary Causes)
Events Bt′ and Ct′′ are supplementary causes of At if and only if

i. Bt′ is a prima facie cause of At,

ii. Ct′′ is a prima facie cause of At,

iii. P (Bt′Ct′′) > 0,

iv. P (At|Bt′Ct′′) > max(P (At|Bt′), P (At|Ct′′)).

“Supplementary causes are together at least as effective as each of them”.

A different formal approach to probabilistic causation can be found in the work of
Wolfgang Spohn. He uses at least two relativizations which clarify his understanding
of causation: first, causation is world dependent — there may well be two worlds that
differ in prescribing a causal relation to two existing events; and second, causation
is context dependent in a world — in some way one should take the history of both
the cause and the effect into consideration. Although Suppes recognizes the need for
relativization (in fact, that is the reason for introducing spurious causes), he does not
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give us a formal access to the matter. Spohn does, but this at the price of a much more
complicated structure.

Let I be a finite non–empty set of variables with a weak ordering ≤ (representing
time), every i ∈ I being associated with a finite set Ωi of at least two values. The cross
product Ω of all the Ωi is the set of all functions (possible worlds) ω such, that for each
i ∈ I it holds that ωi ∈ Ωi. Let {< j} denote the past of j ∈ I and {< j−K} the past
of j ∈ I except K ⊆ I ({k ∈ I|k < j} and {< j}−K, respectively). For each ω ∈ Ω
and J ⊆ I let ωJ be {υ ∈ Ω|υ(i) = ω(i) for all i ∈ J}, and the subset A of Ω (being
a state of affairs) is a J–state iff, for all υ and ω agreeing on J , υ ∈ A iff ω ∈ A.

Now it is possible to express the idea that every cause raises the probability of its
effect under all circumstances given prior to the effect (but excluding the cause itself):

Definition (Direct Cause)
Let A be an i–state, B a j–state, i < j, and ω ∈ A ∩ B. Then A is a direct cause of
B in ω iff P (B|A ∩ ω{< j − i}) > P (B|A ∩ ω{< j − i}).

In a series of definitions Spohn clarifies what circumstances of a direct cause could
be, definitions which range from mere temporal priority to the idea that circumstances
include the other causes and counter–causes of an effect. Causation, as including direct
and indirect causation, should be found somewhere between direct causation by itself
and its transitive closure. Within this framework Spohn — after a discussion of other
variants and arguments against transitivity — opts for the “upper bound”:

Definition (Causation)
Causation Relation is the transitive closure of direct causation.

By introducing the circumstances explicitly into the analysis, Spohn is able to over-
come some of the most common counterexamples to the probabilistic theory of causa-
tion. However, he has to argue against the objection that there are too many facts in his
conditionalization basis.

The Axiomatic Approach
One of the first contributions to causal logic was Greniewski’s paper [5]. Here, the
author lays out his program of causal analysis within mathematical logic.
1. Produce a definition of the concept “A is the cause of B” (by means of axiomat-

ically characterized notions of “hyperspace” and “temporal order”) that meets all
requirements of modern logic and which describes as perfectly as possible the usual
meaning of “A causes B”.

2. Construct a deductive theory of causality based on the above definition and on
possibly further definitions of causal terms.

3. Formulate the postulates of determinism and indeterminism and investigate their
relations to the postulates of the causal theory.

4. Check the applications of this causal theory (are there any, and if there is, which
ones?)
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The strategy of this early work on causal logic looks amazingly up–to–date. The prop-
erties of the causal connective result from the postulated structure of the world. In
such cases one faces the danger of tieing the causal relation too closely to the temporal
succession. The approach avoids the usual difficulty of axiomatic attempts to a causal
analysis, however. One assembles the axiomatics from the formal counterparts of the
intuitive properties of the concept considered. In the case of the causal nexus there is
a considerable shortage in commonly accepted properties. Therefore good candidates
for axioms of the formal calculus are not at hand.

Nevertheless, there are other attempts in axiomatic causal logic, Burks ([3]) is a
very early one as we have seen. Other authors, starting with axiomatic considerations,
pass on to semantical investigations at the first opportunity ([4], [26]). It is of course
possible to search for axiomatizations of semantically explained classes of tautologies.
Although mathematically interesting, this problem merits no special interest from a
causal–logical point of view.

Philosophical Interpretations
Indeed, the formal methods used in the logical analysis of causation do not predeter-
mine the features of the causal nexus in the world. What logic can do is to produce
propositions of how to speak consistently about reality. It is up to the philosopher to
decide which of these possible terminologies is the most appropriate one, which one
fits the world best.

A classical approach to the philosophical treatment of causation was developed by
David Hume. On the basis of his conception of sense impressions and simple ideas, he
thought that there was nothing in our experience which provided us with a simple idea
of the causal nexus as a necessary connection between events. Hume therefore claimed
that since we have this idea of a necessary connection, of a causal power, it must stem
merely from our habits of thinking. What we really have — according to Hume —
are sense impressions (of events) succeeding each other time after time. The idea of
causality arises as a result of the regularity of the temporal succession between events
of a similar kind. As a result there is no causal dependency different from temporal
succession.

In its most developed form the Humean account involved the notion of a law in
the sense that causal beliefs will be valid if (and only if) the relationship between two
events can be subsumed under a general law expressing a regularity. This idea gave
raise to a widely accepted theory of causal explanation which usually takes the form
of the famous D–N–Model of Hempel and Oppenheim: to explain means to deduce
a sentence from two kinds of sentences. Thus, the explanans contains at least one
general sentence (the law) and one sentence describing the boundary conditions and the
actual observation, and the explanandum follows by deductive inferences. But it is well
known that this attempt faces the notorious frame problem concerning the difficulties
with a complete description of the boundary conditions; a problem which appears not
only in explanation theory but also in recent research in Artificial Intelligence.

An attempt to clarify the notion of a cause both with the help of the D–N–Model
of explanation and with the help of the notion of a causal law was made by Wolfgang
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Stegmüller in his [24]. According to him the problem of causality involves the topics of
causal law, scientific explanation, causal explanation, causes, and the general principle
of causation. These topics are related as shown in figure 1 on page 17, where the arrows
depict dependency.

Cause General Principle of Causality

Causal Explanation

Causal Law Scientific Explanation
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Figure 1: The Problem of Causality

Clearly, we now have first to define “scientific explanation” and “causal law”. On this
approach, a scientific explanation is an explanation via the D–N–Model. It is very
hard to define a causal law, and each of the following characteristics connected with
its own difficulties and problems: A causal law is a quantitative, deterministic, micro-
, succession-, near-distance law, expressible by continuous mathematical functions,
which refers to a homogeneous, isotropic spatio–temporal continuum. Thus, according
to Stegmüller, causal laws are very specific, tricky laws of nature. A causal explanation
is, then, defined as a scientific explanation in which the laws are causal laws. This
opens the possibility of defining a cause as in the next definition:

Definition (Cause)
Suppose, the event E has an adequate causal explanation. Then the cause of E is the
totality of antecedent conditions figuring in the explanans of E.

One has to agree with Stegmüller who doubts whether the above defined notion of a
cause has any theoretical or practical relevance.

The Humean account has been extremely influential over the centuries and has been
very much favored by empirically minded philosophers. Despite this, there have al-
ways been alternative theories, although they never gained general support. Eventually
Hume’s phenomenalistic epistemology became more and more difficult to defend and
the foundation of his causal theory was accordingly undermined. Another development
which brought Hume’s regularity account into discredit was the growth of intensional
logic in the first half of our century. Likewise the construction of the possible worlds
semantics and the subsequent rapid development of modal and relevant logic in the
fifties meant a breakthrough in our understanding of counterfactuals. This prepared
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the ground for a new philosophical approach to causality where causal dependency be-
tween external events is not seen as an accidental feature of our thinking. With the
new logical tools it has become obvious since the sixties that one should try to ana-
lyze causal dependency in terms of counterfactuals by the means of possible worlds
semantics.

Part of the advantage of the counterfactual account is seen in the fact that it ex-
plicitly ascribes a modal force to a cause which is missed in the regularity analysis.
This modal force is reflected in our talk about sufficiency and necessity: not only the
occurrence of the cause produces the effect, but also the lack of the cause necessitates
the lack of the effect. It is a hope of those who use such an analysis to be able to give a
full account of causation, including causal dependency as well as causal priority. Other
people require more than counterfactual dependence in order to grasp the meaning of
causation. They often rely on ideas of temporal order or on the notion of propensity
instead.

It is obvious that causation and time are closely associated; the question is which
of them, if any, is ontologically more basic. All possible opinions concerning are to be
found on this matter. According to Hume and his successors the only way a regularity
theory can provide a causal ordering relation is by building upon temporal orientation.
This excludes the conceptual possibility of backward causation and even of simulta-
neous causation which some people want to defend. Thus, a well–known objection to
the idea of defining causal priority by mere temporal priority is that this notion reduces
propter hoc to post hoc. The epistemological ground for claiming that the causal ori-
entation has to be defined in terms of temporal succession would be the suggestion that
we directly perceive the temporal order of events. Those people who argue against this
opinion believe that the temporal order is supervenient on causal processes or, given
that backward causal processes exist, that it may merely be conventionally connected
with the most dominant processes.

Another alternative to the counterfactual analysis has focussed on probabilities and
related topics. The probabilistic analysis of causation is motivated by objections against
the basic abstractions of regularity and of the counterfactual theory. If a single causal
statement is only a mere instance of a causal law, or something which is completely
governed by laws, we would certainly leave us with very few true singular causal state-
ments. There seems nevertheless to be too many exceptions of the so–called laws (and
that is one of the aspects of the frame problem). However, if we deal with a counter-
factual analysis of singular causal statements, and the cause event and the effect event
occur, we have to know how the world would look if the cause had not occurred. But
how can we? Certainly not with complete precision. So, the proposal is instead that
we should consider probabilistic laws in the case of regularity theory, or — more com-
monly — that we should in the second case consider not a fictitious world but rather a
conditional probability.

With this kind of approach the problem of determinism and indeterminism becomes
very vivid. On the one hand, the classical view was that the world is completely de-
terministic in the sense that every event has a cause and this cause is sufficient for the
effect. Very often this ontological sense of the term is confused with the epistemical
sense of predictability. But only for a Laplacian Demon will predictability and the
ontological conception of determinism coincide. On the other hand, since the intro-
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duction of Quantum Mechanics there is general agreement that the world might not be
deterministic. In the realm of the quantum world objects behave indeterministically
in the sense that we cannot ascribe a sufficient cause to every incident. Nevertheless,
the possibility of prediction is still on hand as one has been able to formulate statisti-
cal laws. This has given rise to a natural way of interpreting these statistical laws as
expressing objective chance or propensities.

Others have seen statistical laws and probabilities as useful when we want to de-
scribe complex systems where our knowledge cannot cope with all the details. Either
these details are about the behavior of a huge number of objects, or they are concerned
with the exact values of the initial conditions. In the first case the probabilities are
then usually interpreted as an expression of the lack of our knowledge or seen as re-
flecting patterns of frequencies, but in the second case the possible interpretations of
probabilities are much more open. In addition to the first case one can face principal
uncertainties in dealing with probabilities. Consider causal connections in dissipative
dynamical systems which reveal chaotic behavior (if there are any such systems). Then
the differentiation between “deterministic” (as the idea of a system being perfectly de-
scribable by a set of differential equations) and “probabilistic” is no longer a sharp one.
In such a case the system develops deterministically, but predictions can be stated with
some degree of probability only. This is due to a specific feature of these systems: in
the long run no precise calculation of future states of the system is possible. All we
can know is based on probabilities. For instance, the average temperature of next April
cannot be established on the base of today’s meteorological measurements, but it is
still possible to get some reasonable data based on statistical material covering a large
sample of average temperatures of the period concerned in previous years. Therefore
one might put it not as “either probabilistic or deterministic” but rather as “probabilistic
and yet deterministic”.

Apart for the various possible interpretations of probabilities — whose existence
by themselves casts a shadow over the idea of reducing causal statements to proba-
bility statements as our grasp of the former seems at least as firm as that of the latter
— the probabilistic approach suffers from other well–known problems. One is that
we have no difficulty in talking about events that probabilistically seem to be nega-
tively relevant for their effects (but which are, nevertheless, genuine causes), whereas
probabilistic causation is so defined that causes are positively relevant for their effects.
Another difficult problem to handle is the notion of spurious causes. If one uses only
single probability functions it is impossible to distinguish between a causal chain and
a fork when the probabilities involved are identical. These kinds of problems provide
some philosophers with a feeling that it is impossible to reduce causal statements to
probability statements without any residue.

But there are still other attempts to define causality. Closely associated with the
notion of causation is the conception of human agents. We see ourselves as capable of
producing results and changes in the world by performing actions. It therefore seems
natural to suggest that our ideas of causes are derived from the immediate experience
of our power of manipulating things and bringing about what we intend to happen.
Given this train of thought one can understand, for example, C.H. von Wright’s idea of
defining causation by reference to the interference of agents.
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Definition (Cause and Effect)
P is a cause relative to Q, and Q an effect relative to P , if and only if by doing P
we could bring about Q, or by suppressing P we would remove Q or prevent it from
happening.

Von Wright then combines his definition with the idea of the world as consisting of
branching systems of states. This allows him to talk about different possible courses
of the world consequent upon different patterns of action that might be chosen by the
agent.

However, a conspicuous objection to any attempt at defining the causal nexus in
terms of what we are capable of doing is that it becomes impossible to distinguish be-
tween bringing about Q by doing P in the sense that P causes Q and bringing about
Q by doing P in the sense that P entails Q. This shortcoming may be taken as an
indication that it is the reverse case which is more likely; namely, that the concept of
causation is necessary for an understanding of what it means to bring about Q by doing
P . Actions are, moreover, commonly described in an intentional language, where the
intentional manner of description refers to goals at which people are aiming, whereas
causal descriptions leave out any kind of teleological conception of the action as a
whole. As empirical sciences of man have developed, there has been an increasing in-
terest in getting rid of teleological considerations. Instead of trying to define causation
in terms of actions many scientists and philosophers have over the years attempted to
reduce statements about people’s actions to causal statements. But the truth may very
well be that neither the concept of action nor the concept of causation can be reduced
to one another.

A natural reaction to the various drawbacks which seem haunt every attempt to
analyze causation in terms of other notions like regularities, counterfactuals, branching
times, agents, or probabilities would be to argue that the meaning of causal sentences
cannot be completely given by the meaning of any other kinds of sentences. These
other notions are of course closely connected with causality but the explication of any
of them has its own independent problems. One should therefore consider causality
and any of the other notions as separated from one another although they are at the
same time related to one another in such a way that a complete understanding of one of
them has to take the others into account. That is why sentences reflecting any of these
other notions generally can be used to report causal happenings.

Formal approaches can be considered as attempts at giving an explication of the
causal notion and of the reasoning based on it. Another thing which philosophers have
discussed over the centuries is what are the features in our epistemic situation that gives
rise to causal reasoning, and how does one find out whether there are causal bonds in
nature. There must be some methodological rules to follow assuring that our causal
reasoning sometimes is applicable to what we experience. Already in the seventeenth
century Francis Bacon set out some methods for establishing causality. One should
draw up three tables: one containing the positive instances of the phenomenon to be
explained in all its variation; another covering the negative instances that were similar
to the positive instances but without exhibiting the phenomenon in question; and a third
consisting of a list of positive instances in which the instances are ordered according
to the intensity of the phenomenon regarded as the effect. From the tables the cause



Introduction 21

could then be found by seeking a conjunction of properties such that the conjection can
be obtained among all positive instances, but not among every negative instances, and
it increases its intensity at the same time as that of the phenomenon.

Another important historical contribution to the development of causal methods
was made by John Stuart Mill who, like Bacon, suggested three possible ways for
inferring causes. The first one is the method of agreement where one infers that the
cause is those properties common to all instances of an effect. The second is the method
of difference where one infers that causes are those properties present to all instances of
an effect but absent from all instances taken not to be an effect. Finally, the third one is
the method of concomitant variation where one infers that the cause is the combination
of properties that increases in intensity as the effect increases in intensity but decreases
when that of the effect does. Basically, it is these three methods that make up the
foundation for a modern statistical analysis of correlations between events.

What kind of inclinations one harbours towards the various formal approaches to
an analysis of causation hinges very much on one’s general philosophical outlook. If
someone has a strong empirical or non–realist attitude to semantics and epistemology,
he or she would be liable to look positively at those approaches that contain as few el-
ements as possible lying outside the range of our experience, or as many elements that
can easily be interpreted in accordance with the ideals of empiricism. Such approaches
would include accounts based on regularity, branching time, and on some versions of
the probability approach, namely those cases where probabilities are interpreted as a
measure of the lack of knowledge or as expressions of observable frequencies. Others
have more realist inclinations towards meaning and knowledge, and they will therefore
seek to develop approaches open for a realist understanding. Those include accounts
building on counterfactuals, other modal approaches, and at least one version of prob-
abilities where these are seen as expressions of propensities or objective changes.

It is therefore obvious that which kind of analysis of the causal nexus is regarded as
satisfactory is not something that is decidable simply on the grounds that the analysis
is consistent with our ways of speaking about causal matters. The question of one’s
philosophical perspective on the world is a determining factor of which analysis one
prefers. Which one is considered as conveying our intuitions most accurately depends
very much on arguments drawn from other areas of philosophy. This explains why
causal analysis is so challenging.
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